Normal Forms

Lecture 30

Robb T. Koether

Hampden-Sydney College

Mon, Apr 16, 2018

Normal Forms

First Normal Form

- 3 Functional Dependencies
- Second Normal Form

Outline

- Normal Forms
- 2 First Normal Form
- 3 Functional Dependencies
- Second Normal Form

Normal Forms

- A normal form is a standard form.
- The standard forms are generally easier to work with and they are more efficient.
- Nonstandard forms can be inefficient (time or space) and can be error prone.

Normal Forms

- There are several levels of normal form for databases, each one built on the preceding level.
 - First Normal Form.
 - Second Normal Form.
 - Third Normal Form.
 - Boyce-Codd Normal Form.
 - Fourth Normal Form.
 - Fifth Normal Form.

Outline

- Normal Forms
- First Normal Form
- 3 Functional Dependencies
- Second Normal Form

First Normal Form

Definition (First Normal Form)

A relation is in first normal form (1NF) if the value of every attribute for every tuple is a single value (atomic).

This rules out lists of values or sets of values.

First Normal Form

Not in First Normal Form

order_no	cat_no	dept	sales_person	quant	cust_no	cust_name
222	1234	hardware	John Wilson	2	3333	Joe Smith
	3456			2		
444	4567	lumber	Tim Gramm	2	4444	Sue Taylor
555	5678	garden	David Simon	3	3333	Joe Smith
	6789			1		
777	4567	lumber	Tim Gramm	2	7777	Bob Sponge
888	1234	hardware	Ben Sherman	1	4444	Sue Taylor

- In the orders table, one order may include multiple items.
- Nevertheless, we make a separate tuple for each item.

Example – 1NF Normalized Table

Example - 1NF Normalized Table

order_no	cat_no	dept	sales_person	quant	cust_no	cust_name
222	1234	hardware	John Wilson	2	3333	Joe Smith
222	3456	hardware	John Wilson	2	3333	Joe Smith
444	4567	lumber	Tim Gramm	2	4444	Sue Taylor
555	5678	garden	David Simon	3	3333	Joe Smith
555	6789	garden	David Simon	1	3333	Joe Smith
777	4567	lumber	Tim Gramm	2	7777	Bob Sponge
888	1234	hardware	Ben Sherman	1	4444	Sue Taylor

 To 1NF-normalize the table, make a separate tuple for each combination of values.

Outline

- Normal Forms
- 2 First Normal Form
- Functional Dependencies
- Second Normal Form

Functional Dependencies

Definition (Functional Dependency)

For any tuple t and for any set of attributes A, let t[A] represent the values of t on the attributes in A. Then, for any two sets of attributes X and Y, Y is functionally dependent on X, denoted $X \to Y$, if

$$t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y].$$

The relation $X \rightarrow Y$ is a functional dependency.

 This means that if two tuples have the same values for the attributes in X, then they must also have the same values for the attributes in Y.

- Consider a relation emp_proj_works with the attributes
 - ssn Social Security number
 - lname Last name
 - proj Project number
 - proj_name Project name
 - dept Department of the project
 - hours Number of hours employee worked on project.
- Using the semantics of the situation, list all functional dependencies.

 The following are a few functional dependencies in the company database.

```
ssn \rightarrow lname
ssn, dept \rightarrow lname
ssn \rightarrow lname, dept, proj, proj_name
proj \rightarrow proj_name
proj \rightarrow dept
proj \rightarrow proj_name, dept
ssn, proj \rightarrow hours
```

• List all functional dependencies in the earlier example.

Definition (Superkey)

Let *A* be the set of all attributes in a relation *R*. Then a set $S \subseteq A$ is a superkey of *R* if $S \to A$.

Definition (Superkey)

Let *A* be the set of all attributes in a relation *R*. Then a set $S \subseteq A$ is a superkey of *R* if $S \to A$.

Definition (Candidate Key)

A collection of attributes K is a candidate key of a relation R if K is a superkey of R, but no proper subset of K is a superkey of R. A candidate key is also called a key.

Definition (Superkey)

Let *A* be the set of all attributes in a relation *R*. Then a set $S \subseteq A$ is a superkey of *R* if $S \to A$.

Definition (Candidate Key)

A collection of attributes K is a candidate key of a relation R if K is a superkey of R, but no proper subset of K is a superkey of R. A candidate key is also called a key.

Definition (Primary Key)

A primary key of a relation is an arbitrarily selected candidate key.

- A candidate key is a "minimal" superkey in the sense that if we remove any attribute from it, then it is no longer a superkey.
- What are the superkeys of the relation emp_proj_works?
- What are the candidate keys?
- What is the primary key? (our choice)

Outline

- Normal Forms
- 2 First Normal Form
- 3 Functional Dependencies
- Second Normal Form

Example

Superkeys

$$AB \rightarrow C$$
, $C \rightarrow D$, $D \rightarrow A$

Example

Superkeys

 Let the schema be R(A, B, C, D) and let the functional dependencies be

$$AB \rightarrow C$$
, $C \rightarrow D$, $D \rightarrow A$

• Find all functional dependencies.

Example

Superkeys

$$AB \rightarrow C$$
, $C \rightarrow D$, $D \rightarrow A$

- Find all functional dependencies.
- Find all candidate keys.

Example

Superkeys

$$AB \rightarrow C$$
, $C \rightarrow D$, $D \rightarrow A$

- Find all functional dependencies.
- Find all candidate keys.
- Find, if any, all superkeys that are not candidate keys.

Example

Superkeys

$$AB \rightarrow C$$
, $BC \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

Example

Superkeys

 Let the schema be R(A, B, C, D) and let the functional dependencies be

$$AB \rightarrow C$$
, $BC \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

• Find all functional dependencies.

Example

Superkeys

$$AB \rightarrow C$$
, $BC \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

- Find all functional dependencies.
- Find all candidate keys.

Example

Superkeys

$$AB \rightarrow C$$
, $BC \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

- Find all functional dependencies.
- Find all candidate keys.
- Find, if any, all superkeys that are not candidate keys.

Outline

- Normal Forms
- 2 First Normal Form
- 3 Functional Dependencies
- Second Normal Form

Full Functional Dependency

Definition (Full Functional Dependency)

A functional dependency $X \to Y$ is full if removal of any of the attributes from X renders it no longer a functional dependency. Otherwise, the functional dependency is partial.

- A full functional dependency is minimal for the set Y as a whole, but it may not be minimal for each attribute in Y.
- This is similar to the definition of a candidate key, but applied only to the set Y.
- If the primary key is a single attribute, then there can be no partial dependencies.

Primary Key

Definition (Prime Attribute)

A prime attribute of a relation R is an attribute that is a member of some key of R. All other attributes are non-prime.

- List the prime attributes in the previous example.
- List the non-prime attributes in the previous example.

Example

Superkeys

$$\begin{array}{c} \textit{AB} \rightarrow \textit{C}, \\ \textit{C} \rightarrow \textit{D}, \\ \textit{D} \rightarrow \textit{A}. \end{array}$$

Example

Superkeys

 Let the schema be R(A, B, C, D) and let the functional dependencies be

$$AB \rightarrow C$$
, $C \rightarrow D$, $D \rightarrow A$.

• Which functional dependencies are full?

Example

Superkeys

$$AB \rightarrow C$$
, $C \rightarrow D$, $D \rightarrow A$.

- Which functional dependencies are full?
- Find all prime attributes.

Example

Superkeys

$$AB \rightarrow C$$
, $BC \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

Example

Superkeys

 Let the schema be R(A, B, C, D) and let the functional dependencies be

$$AB \rightarrow C$$
, $BC \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

• Which functional dependencies are full?

Example

Superkeys

$$AB \rightarrow C$$
, $BC \rightarrow D$, $CD \rightarrow A$, $AD \rightarrow B$.

- Which functional dependencies are full?
- Find all prime attributes

Second Normal Form

Definition (Second Normal Form)

A relation is in second normal form (2NF) if every nonprime attribute *A* is fully functionally dependent on the primary key.

 The idea is to avoid any subsets of the primary key that could serve as a primary key for some of the nonprime attributes.

Example

order_no	cat_no	dept	sales_person	quant	cust_no	cust_name
222	1234	hardware	John Wilson	2	3333	Joe Smith
222	3456	hardware	John Wilson	2	3333	Joe Smith
444	4567	lumber	Tim Gramm	2	4444	Sue Taylor
555	5678	garden	David Simon	3	3333	Joe Smith
555	6789	garden	David Simon	1	3333	Joe Smith
777	4567	lumber	Tim Gramm	2	7777	Bob Sponge
888	1234	hardware	Ben Sherman	1	4444	Sue Taylor

Show that the relation is not in 2NF.

2NF Normalization

 To put a relation into 2NF, move the nonprime keys that are not fully functionally dependent on the primary key to a separate table along with that part of the primary key on which they are fully functionally dependent.

Example – 2NF Normalized Tables

Example – 2NF Normalized Tables

order_no	cat_no	quant	
222	1234	2	
222	3456	2	
444	4567	2	
555	5678	3	
555	6789	1	
777	4567	2	
888	1234	1	
Table 1			

order_no	dept	sales_person
222	hardware	John Wilson
444	lumber	Tim Gramm
555	garden	David Simon
777	lumber	Tim Gramm
888	hardware	Ben Sherman

Table 2

order_no	cust_no	cust_name
222	3333	Joe Smith
444	4444	Sue Taylor
555	3333	Joe Smith
777	7777	Bob Sponge
888	4444	Sue Taylor

Table 3

The three tables above are in 2NF.